Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.877
Filtrar
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606789

RESUMO

Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.


Assuntos
Borboletas , Camundongos , Humanos , Animais , Ovinos/genética , Borboletas/genética , Cromossomos/genética , Meiose/genética , Centrômero , Translocação Genética/genética , Mamíferos
2.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575358

RESUMO

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , 60634 , Segregação de Cromossomos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Acetilação , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
5.
PLoS Genet ; 20(3): e1011140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427688

RESUMO

During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Meiose/genética , Prófase/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Sci Adv ; 10(10): eadk9001, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457500

RESUMO

Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.


Assuntos
Diploide , Meiose , Animais , Camundongos , Haploidia , Meiose/genética , Núcleo Celular/genética , Cromátides
7.
Theor Appl Genet ; 137(4): 86, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512498

RESUMO

KEY MESSAGE: Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.


Assuntos
Recombinação Homóloga , Melhoramento Vegetal , Genoma , Centrômero , Produtos Agrícolas/genética , Meiose/genética
8.
Nucleus ; 15(1): 2328719, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488152

RESUMO

Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.


Assuntos
Centrômero , Heterocromatina , Heterocromatina/genética , Meiose/genética , Pareamento Cromossômico
9.
PLoS Genet ; 20(3): e1011185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489251

RESUMO

The segregation of homologous chromosomes during meiosis typically requires tight end-to-end chromosome pairing. However, in Drosophila spermatogenesis, male flies segregate their chromosomes without classic synaptonemal complex formation and without recombination, instead compartmentalizing homologs into subnuclear domains known as chromosome territories (CTs). How homologs find each other in the nucleus and are separated into CTs has been one of the biggest riddles in chromosome biology. Here, we discuss our current understanding of pairing and CT formation in flies and review recent data on how homologs are linked and partitioned during meiosis in male flies.


Assuntos
Recombinação Genética , Complexo Sinaptonêmico , Animais , Masculino , Complexo Sinaptonêmico/genética , Meiose/genética , Pareamento Cromossômico/genética , Drosophila/genética , Segregação de Cromossomos/genética
10.
Mol Biol Cell ; 35(4): pe1, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517328

RESUMO

Chromosomes and karyotypes are particularly rich in oddities and extremes. Described below are 10 remarkable chromosomes and karyotypes sprinkled throughout the tree of life. These include variants in chromosome number, structure, and dynamics both natural and engineered. This versatility highlights the robustness and tolerance of the mitotic and meiotic machinery to dramatic changes in chromosome and karyotype architecture. These examples also illustrate that the robustness comes at a cost, enabling the evolution of chromosomes that subvert mitosis and meiosis.


Assuntos
Cromossomos , Meiose , Cromossomos/genética , Cariótipo , Cariotipagem , Meiose/genética , Mitose
11.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478689

RESUMO

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Cromossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Recombinação Homóloga/genética , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Sci Rep ; 14(1): 5236, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433229

RESUMO

Meiosis is a specialized type of cell division that occurs physiologically only in germ cells. We previously demonstrated that MYC-associated factor X (MAX) blocks the ectopic onset of meiosis in embryonic and germline stem cells in culture systems. Here, we investigated the Max gene's role in mouse primordial germ cells. Although Max is generally ubiquitously expressed, we revealed that sexually undifferentiated male and female germ cells had abundant MAX protein because of their higher Max gene expression than somatic cells. Moreover, our data revealed that this high MAX protein level in female germ cells declined significantly around physiological meiotic onset. Max disruption in sexually undifferentiated germ cells led to ectopic and precocious expression of meiosis-related genes, including Meiosin, the gatekeeper of meiotic onset, in both male and female germ cells. However, Max-null male and female germ cells did not complete the entire meiotic process, but stalled during its early stages and were eventually eliminated by apoptosis. Additionally, our meta-analyses identified a regulatory region that supports the high Max expression in sexually undifferentiated male and female germ cells. These results indicate the strong connection between the Max gene and physiological onset of meiosis in vivo through dynamic alteration of its expression.


Assuntos
Fator X , Meiose , Animais , Feminino , Masculino , Camundongos , Apoptose , Pontos de Checagem do Ciclo Celular , Células Germinativas , Meiose/genética
13.
14.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512324

RESUMO

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Masculino , Camundongos , Animais , Proteínas de Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Mutação com Perda de Função , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Mutação , Meiose/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Reparo do DNA/genética , Mamíferos/metabolismo
15.
Methods Mol Biol ; 2770: 227-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351457

RESUMO

Molecular approaches are required to detect DNA double-strand break (DSB) events and to map and quantify them at high resolution. One of the most popular molecular methods in the field of meiotic recombination is the ChIP-SSDS (Chromatin immuno-precipitation and single-strand DNA sequencing). Here, we present two fully-automated Nextflow-based pipelines to analyze the sequencing data generated by this method. The first one identifies highly reproducible DSB sites, while the second provides a characterization of recovered DSB sites, including the description of the hotspot distribution and intensity along the genome and the overlap with specific regions such as gene features or known DSB hotspots. Finally, we discuss limitations/advantages and key points to consider when applying this method to specific genotypes or unconventional species.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , DNA de Cadeia Simples/genética , Genoma , Análise de Sequência de DNA , Meiose/genética
16.
Genes Dev ; 38(3-4): 115-130, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383062

RESUMO

H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.


Assuntos
Heterocromatina , Histonas , Células Germinativas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Meiose/genética , Metilação , Masculino
17.
PLoS Genet ; 20(2): e1011175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377115

RESUMO

Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.


Assuntos
Meiose , Prófase Meiótica I , Animais , Masculino , Camundongos , Alelos , DNA Helicases/genética , Reparo do DNA/genética , Meiose/genética , Prófase Meiótica I/genética
18.
Mol Genet Genomic Med ; 12(2): e2402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400599

RESUMO

BACKGROUND: Recurrent miscarriage (RM) affects 1% to 5% of couples trying to conceive. Despite extensive clinical and laboratory testing, half of the RM cases remain unexplained. We report the genetic analysis of a couple with eight miscarriages and the search for their potential genetic etiology. METHODS: Short tandem repeat (STR) markers, single nucleotide polymorphic (SNP) microarray, and human DNA methylation microarray were used to analyze the genotypes of two miscarriages. Exomes sequencing was performed on DNA from the two partners and identified variants were validated by Sanger sequencing. RESULTS: STR marker genotyping demonstrated that the two available miscarriages are triploid digynic and resulted from the failure of Meiosis II. SNP microarray analysis revealed an additional Meiosis I abnormality that is the segregation of the two maternal homologous chromosomes in one triploid miscarriage. Whole-exome sequencing on DNA from the two partners identified candidate variants only in the female partner in two genes with roles in female reproduction, a missense in EIF4ENIF1 (OMIM 607445) and a stop gain in HORMAD2 (OMIM 618842). EIF4ENIF1 is a eukaryotic translation initiation factor 4E nuclear import factor required for the oocyte germinal vesicle breakdown, and HORMAD2 is part of the synaptonemal complex that was hypothesized to act as a checkpoint mechanism to eliminate oocytes with asynapsis during meiotic prophase I in mice. CONCLUSION: While both genes may contribute to the phenotype, the Meiosis I abnormalities in the conceptions favor the causal role of HORMAD2 in the etiology of RM in this couple. This report illustrates the importance of comprehensively analyzing the products of conception to guide the search for the genetic causation of RM.


Assuntos
Aborto Habitual , Meiose , Feminino , Humanos , Gravidez , Aborto Habitual/genética , Códon de Terminação , DNA , Meiose/genética , Triploidia , Masculino
19.
Sci Rep ; 14(1): 3602, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351116

RESUMO

Reproductive success requires the development of viable oocytes and the accurate segregation of chromosomes during meiosis. Failure to segregate chromosomes properly can lead to infertility, miscarriages, or developmental disorders. A variety of factors contribute to accurate chromosome segregation and oocyte development, such as spindle assembly and sister chromatid cohesion. However, many proteins required for meiosis remain unknown. In this study, we aimed to develop a screening pipeline for identifying novel meiotic and fertility genes using the genome of Drosophila melanogaster. To accomplish this goal, genes upregulated within meiotically active tissues were identified. More than 240 genes with no known function were silenced using RNA interference (RNAi) and the effects on meiosis and fertility were assessed. We identified 94 genes that when silenced caused infertility and/or high levels of chromosomal nondisjunction. The vast majority of these genes have human and mouse homologs that are also poorly studied. Through this screening process, we identified novel genes that are crucial for meiosis and oocyte development but have not been extensively studied in human or model organisms. Understanding the function of these genes will be an important step towards the understanding of their biological significance during reproduction.


Assuntos
Proteínas de Drosophila , Infertilidade , Humanos , Animais , Camundongos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transcriptoma , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Meiose/genética , Segregação de Cromossomos , Fertilidade/genética , Infertilidade/metabolismo , Oócitos/metabolismo
20.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38333961

RESUMO

A properly regulated series of developmental and meiotic events must occur to ensure the successful production of gametes. In Drosophila melanogaster ovaries, these early developmental and meiotic events include the production of the 16-cell cyst, meiotic entry, synaptonemal complex (SC) formation, recombination, and oocyte specification. In order to identify additional genes involved in early oocyte development and meiosis, we reanalyzed 3 published single-cell RNA-seq datasets from Drosophila ovaries, using vasa (germline) together with c(3)G, cona, and corolla (SC) as markers. Our analysis generated a list of 2,743 co-expressed genes. Many known SC-related and early oocyte development genes fell within the top 500 genes on this list, as ranked by the abundance and specificity of each gene's expression across individual analyses. We tested 526 available RNAi lines containing shRNA constructs in germline-compatible vectors representing 331 of the top 500 genes. We assessed targeted ovaries for SC formation and maintenance, oocyte specification, cyst development, and double-strand break dynamics. Six uncharacterized genes exhibited early developmental defects. SC and developmental defects were observed for additional genes not well characterized in the early ovary. Interestingly, in some lines with developmental delays, meiotic events could still be completed once oocyte specificity occurred indicating plasticity in meiotic timing. These data indicate that a transcriptomics approach can be used to identify genes involved in functions in a specific cell type in the Drosophila ovary.


Assuntos
Cistos , Proteínas de Drosophila , Animais , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interferência de RNA , Recombinação Genética , Complexo Sinaptonêmico , Meiose/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Perfilação da Expressão Gênica , Cistos/genética , Cistos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...